“. i“
i J
5

@ saaneoy = [aag]

i WNH®dWaL = 1

@ pico
B8 pricks

for micro:bit

MicroPython

» WIRELESS = = MOTOR DRIVER B |

® LDR@ = NNLSID <y

Except for commercial usage, you can copy, reproduce and edit photos

and content in this book by referring

Author: Selim Gayretli
Translate & Editor: Naze Gizem Ozer

Designer: Elanur Tokalak

PicoBricks Developer Team

Project Maneger - Yasir Cicek
Chief Developer - Suat Morkan
Product Developer - Naze Gizem Ozer
Industrial Design Developer - Sercan Okay
Graphic Designer Developer - Elanur Tokalak
Hardware & Software Developer - Atakan Ozturk

Learning Content & Software Developer - Selim Gayretli

rootrtan |

Powered by

@l pico Microsoft
B8 pricks {t MakeCode

for micro:bit

WV AT 1S PICOBIICKS? eeeeeeeeeetteeeeteaeetesesestesssestesssssssssssssessssssessssasesssssssssssatssssnsasessasssssnsasessasssessnssseses 5-6

WAL IS MICTOIBIT? ettt senssassess s sssessessessssssessesssssssssessessessssssssssssesssssssasessessess 7
PYTNON ettt ettt ettt ss st s st s s s s e e se s b et s s s e s e st e b st s s e e A e R b et et b s s e e s e Rt et s st s s anaees 8
PROJECTS

BIINK ettt s s s sttt b s st bbb bbb b0 16-19
ACTION = REACTION aceeeercreesinenctcesessesesessssssessessessssssessssssssesssasessessssssessssssssssssessesssssssssessssssssssasesses 20-23
(@Ca] [T gl G- o L= PO 24-27
PICOBIICKS PIANO .ueceeeeiineeeeeesessesesessessessesessssssesssssesssssssssesssssssssssssssesssssssssesssssssssssssasesssssssssssssssssss 28-31
RGB Led CONTIOl PAN@I .. iiiiicicicncisiseesesescsesssssissssssssssssssssssassassssssssssssssssssssssssssssses 32-35
LI T=T 8 a gl 0 = =T TR 36-39
1Y 0 = T A @ T 1= OO 40-43
NIGNT GNA DAY ottt saess e sess s sesessssesessesesssssesessssesessssesessssssssessesssssssssessssesessssssssessanes 44-47
FIZZ = BUZZ oaeeeeeeesestststseessessessessess s sssssssssssssssssstssssssssssssssssssstastssssssssssssssssesstsstsssessssssssenssnssassasseses 48-51
D PINT MELET ettt e ss st s st s s s s ss st ss s s s s s s e st e s ettt s s e e s bbbt sesasassnsenasane 52-55
MOrSE COAE CrytOGIraP LY ..cccceeeeeetseeeeeeetstssesessssss e sssesessssssssssssssssssesssssssssssssssssssssssssssssssssensss 56-59
Car PArKiNg SYSTEIM ..ttt sssss s ssss e seses s sssesassessssssesessssesssessssesessssesessssesesssssssases 60-63
TADIE LA ettt ststststess s st sessssssss s s e seses st s s s e s s s st s st s s s e e s ese st et esesassssesesasssesesasasassens 64-67
COIN DISPENCE ..ttt ses s sessssssss e sesessssssssssesessssesessssesessssesesassssessssesesessssssessesesessesesessesesnses 68-71
Gesture CoNtrolled ARM Pan Tilt .. rcensenseessesesssssessessessssssessessesssssssssessessssssessessssss 72-76
3D LADYTINTN ettt sess e sess s aes st seses s ses s s s s s e s s s s ebesessesesesassesessesesessssesssassesesasassnen 77-80
[T - OO 81-85
PICOBIICKS LOGO LAMIP ettt esessesessssesesssssssssssssesessesssessssssessssessssssssessssesssnssssesssssesesasns 86-89

03

ADD ON

LONAON EYE ceetecstreestnieistssestssss s ssasssns 90-97
MATES EXPIOTEN ettt etesststssesesss e sssssesesssssssssssssssssssssesssnssssssssssesesssssessnssssssesesesesssesssnsnssssenenases 98-107
TRASH TECK et bbbttt bbbttt asas 108-116
MONEBY BOX ..cuueiiiiiieceinisiniiiticessssssssssssstssssssssssssssssssssssssssssssassssessstessssessssssssssssssssssssessssssssssssssasses 17-126
Safe Box

.. 127-135

What Is PicoBricks?

Motor Driver

OLED
Screen
RGB Led Wireless & IR
Temp. & Gesture & Color
Hum. Sensor

PIR (Motion) Light Sensor

Sensor Potentiometer

" ' a
H] picobr fcs)

Piano & Gaming

PicoBricks is a development board that eliminates the difficulties experienced in physical
programming. You can invest the time saved from these challenges to create more

creative projects.

Thanks to its modular structure, PicoBricks eliminates challenges such as soldering, cable
clutter, incorrect pin connections, etc., experienced in physical programming. Additionally,
its microcontroller board Micro:Bit, being easily programmable and supporting various

coding platforms, further eradicates programming difficulties during the coding phase.

05

PicoBricks supports both block-based and text-based programming tools. With MakeCode

Blocks and MicroBlocks IDE, we can code our projects quickly by using block-based
programming. Block-based programming tools eliminate many difficulties such as
punctuation marks and functions while writing code. This makes it an effective method
for developing algorithmic skills necessary for programming education, especially for
young age groups or beginners. With PicoBricks, while developing projects, we can easily
create complex projects by simply dragging a few code blocks onto our project page by
using MakeCode and MicroBlocks programs. Additionally, PicoBricks supports the C
programming language in Arduino IDE and the MicroPython programming language in
Thonny IDE. Arduino IDE and Thonny IDE are the most commonly used programming
tools for physical programming education among text-based programming tools. Thonny
IDE eliminates punctuation (Syntax) errors frequently encountered in text-based

programming languages due to its support for the MicroPython language.

T

06

What Is Micro:Bit?

Micro:bit, a microcontroller board that features a 5x5 LED matrix, 2 buttons, an

accelerometer, a compass, a speaker, and a microphone sensor on its front surface.

Additionally, you can connect various sensors to the micro:bit through the pin points on

the underside of the device.

With PicoBricks, we can connect 13 different sensors to the Micro:Bit without the need for

jumper cable connections.

After placing the Micro:Bit on the PicoBricks Main Board Module, we can use the following

sensors without the need for jumper cable connections.

Microphone indicator

USB Connector

Touch Logo

25 LED Lig

2 Buttons

Pin-O Pin-1 Pin-2 Pin-3V

Pin-GND

ey /[:I o

1
2CA ls.o“m

Radio antenna Microphone

07

Reset and power button

Battery socket

Processor

Speaker

Edge connector for accessories

=== COmpass and accelerometer

Python is a great way to deepen your programming skills through text-based coding. Its
natural English-like structure makes it easy to start learning, but it's also powerful enough

to be used in areas like data science and machine learning.

It's widely used in schools and is supported by a global commmunity of teachers,
programmers and engineers. Our Python editor is designed to help teachers and learners

get the most out of text-based programming on the micro:bit.

Why learn Python on the micro:bit?

Python is an excellent first text-based language to learn. Its instructions and syntax are

based on natural language, making code easy to read, understand and modify.

As well as being widely used in education, it's used in industry, especially in the areas of
data science and machine learning. Python is not just used by software developers, but

also by people working in fields as diverse as medicine, physics and finance.

Python on the BBC micro:bit brings the benefits of physical computing to students aged
11-14, learning programming fundamentals through text-based coding: immersive, creative

experiences for students that help build engagement and knowledge.

PicoBricks can be programmed with the Python (MicroPython) programming language
both online using MakeCode Python and offline through Python editors such as Thonny
IDE.

08

What is MakeCode Python?

MakeCode Python for Micro:Bit is a text-based (Python) software development editor
developed by Microsoft. With MakeCode, you can quickly and easily create programming
steps for robotic coding projects prepared using the Micro:Bit microcontroller board.
Using the simulation feature, you can simulate your code blocks even if your circuit is not

ready.

MakeCode is not just an editor but also a maker environment where you can publish your
projects. By publishing your prepared projects on your MakeCode account, you can share

them with us through https://commmunity.robotistan.com/.

What is Thonny IDE?

Thonny IDE, Mico:Bit, Raspberry Pi, etc. is an offline programming editor that allows us to
program different microcontrollers in the Python (MicroPython) programming language.

It can be coded offline with the PicoBricks Thonny IDE editor.

How to Use Thonny IDE

To use PicoBricks with Thonny IDE, please follow the steps below.

® Go to thonny.org from your browser and download the version of Thonny IDE suitable

for your operating system.

Thonny b4 Download version 4.1.6 for

“= Windows « Mac + Linux
Python IDE for beginners

09

Tools Help

O Run current script s
Debug current script (nicer} Ctrl+F5
Debug current script (faster) Shift+F5
Visualize current script at Python Tutor

1% Debug current script (birdseye) Ctrl+Shift+B

.= Step over F6
. Step into F7
.U, Step out
& Resume F8
“i Run to-cursor Ctri+FB
Step back Cirl+B

& Run current script in terminal Ctri+T
Dock user windows
Pygame Zero mode:

@ Stop/Restart backend Ctrl+F2
Interrupt execution Ctri+C
Send EOF / Soft reboot Ctri+D
Disconnect

From the window that opens, follow the steps below to install

the firmware required for Micro:Bit into our microcontroller.

‘ Install or update MicroPython for BBC micro:bit

B Thonny options Q
General | nerpreter Editor Theme & Font Run & Debug Terminal Shell Asssant

Which kind of interpreter should Thonny use for running your code?
|“.Pj._ m ...iﬂa _,|

Connect your device to the computer and select corresponding port below
(look for your device name, “USB Serial* or “UART").
Ifyou can't find it, you may need to install proper USB driver first.

Make sure MicroPython has been installed to your microibit.

't forget that main.py

mig iCI

‘anly works without embedded main script.)

' mbed Serial Port @ COM14 H

TR X A o
I~ Synchronize device’s real time clock

% Use local time in real time clock

 Restart interpreter before running a script

Let's go back to the previous screen and select our
microcontroller and port.

< Try to detect port automatically >

M Restart interpreter before running a script

T Thonny options 0
MicroPython (BBC microzbit) -
Local Python 3

Remote Python 3 (S5H)
MicroPython (SSH)

We are connected.

10

Now let's save the PicoBricks Python library to the microcontroller. To do this, let's go to the
PicoBricks for Micro:bit GitHub page (https://github.com/Robotistan/PicoBricks-for-MicroBit)

and download the picobricks.py library from the file location below to our computer.

Software>Libraries>picobricks.py

[=]

[=]

o

[=]

—

rbt.ist/pbformblib

® Open the library file in Thonny IDE. Use the 'Save As' (Ctrl+Shift+S) option to save it to the
Micro:bit.

t Save to micro:bit b4
t Where to save to? » = =4
microbit

W e \ R
S

* Once the saving process is successfully completed, you can start writing the project code.

T Sing ... *

[0 picobrickspy Icml

1

How to Use MakeCode Python

* Open the MakeCode Python editor by going to (https:/python.microbit.org/v/3/reference.)

« 5 c

£ pythonmicrobit.org/u/3/reference

) micro:bit Q seacn e 2 united project ap
T N 1 # Tmports go at the top
2 f microbit import
e ackof ot chenges ’
.
5 # Code in a 'while True:' loop repeats forever
Display > 6 while True:
The microbit's LED display output 7 display.show(Image.HEART)
8 sleep(1600)
display.scroll('Hello')

Buttons =
Use bution inputs in your code

Logic >
Making decisions in code

Accelerometer >) (D v
Detect gestures and movement

[Norows logged v

Let's Get to Know MakeCode Python Editor

/A

Reference

The Reference section makes it easy to discover what Python and the micro:bit can
do, like browsing blocks in MakeCode or Scratch. Easily discovering the potential of
the micro:bit hardware and writing software in Python boosts your students'

creativity.

Don't forget to explore the Ideas tab which contains complete working programs

your students can use straight away, then modify to make their own. You'll find an

emotion badge, step counter, radio, and sound projects.

This is the area that allows you to use the functions of Micro:bit sensors,

mathematics, Bluetooth, and other libraries.

12

Simulator

Students can test their code out using the simulator before sending it to a real micro:bit.

This helps them develop, test, debug and evaluate their code and means they can work

on projects even when they don't have access to a micro:bit device.

£ Untitled project

Imports go at the top
from microbit import %

Code in a 'while True:' loop repeats forever

IO R W N R

while True:
display.show(Image.HEART)
8 sleep(10600)
g display.scroll('Hello')
10

shake - @ v

® ©
OO o
No rows logged v

MakeCode Python Connection Steps

¢ Connect k

¢ Send to micro:bit - 4
k Connect Cable
Ve

4
Click the “three-dot” button.

Select micro:bit

@ Python Editor for microbit X In next popup:
€« C (@ python.microbit.org/

python.microbit.org wants to connect

*BBC micru:bit CMISIS-DAP™ Choose your micro:bit

Select ‘Connect’

] I

13

Connect cable

Don't show this again

python.microbit.org wants to connect

ISIS-DAP - Paired

%

Connect Cable

Connection Completed

Now let's save the PicoBricks Python library to the microcontroller. To do this, let's go to the

PicoBricks for Micro:bit GitHub page (https:/github.com/Robotistan/PicoBricks-for-MicroBit).

Software>Libraries>picobricks.py

[=]

[=]

o

[=]

I_‘

rbt.ist/pbformblib

Copied!
Raw Click the “Create file” button. 0
E‘/ % A Create file)

Copy the codes

Create a new Python file in this project

Create a new Python file in this project G
Name *
[picobricks|]

We'll add the . py extension for you.

Type "picobricks" in the name field and
click the "create” button.

14

® Paste the codes

486 if abs(gesture ud _delta_) > abs(gesture lr_delta):
487 " | return "Down™

488 else:

489 " | return "RIGHT"

490

A91 #EFHHHAHH#HHCSRO4 Library##i#ssssss

492 def measure_distance():

493 | # Send a 10ps pulse to the trigger to initiate measurement
494 pinl.write_digital(0)

495 time.sleep_us(2)

496 pinl.write_digital(1l)

497 time.sleep_us(10)

498 pinl.write_digital(0)

499

500 # Initialize start and end times

501 start_time = @

502 end_time = 0

503

504 # Measure the duration of the echo pulse

505 while pin2.read_digital() == @:

506 ___]startitime = time.ticks_us()

507 while pin2.read_digital() == 1:

508 ___]enditime = time.ticks_us()

509

510 # Calculate the distance based on the echo time

511 duration = end_time - start_time

512 distance_cm = (duration / 2) % 0.0343 # Speed of sound is 343 m/s (0.0343 cm/
513 return distance_cm

* Once the saving process is successfully completed, you can start writing the project

code.

Project name

blink 2

Ll

main.py

picobricks. py

Ll

15

Blink Project

An employee starting a new job in real life usually takes on the most basic tasks. A janitor

learns to use a broom, a chef learns kitchen utensils, and a waiter learns tray carrying. We
can multiply these examples. The first code written by those who are new to software
development is generally known as "Hello World." The language they use prints "Hello
World" to the screen or console window when the program starts, marking the initial step
in programming. It's akin to a baby starting to crawl... The first step in robotic coding, also
known as physical programming, is the Blink application. In robotic coding, blinking
symbolizes a significant moment. Simply by connecting an LED to the circuit board and
coding it, the LED can be made to continuously blink. Ask individuals who have developed
themselves in the field of robotic coding how they reached this level. The answer they will

give you typically starts with: "It all began with lighting up an LED!"

LEDs and screens are electronic circuit components that provide visual output. Thanks to
output elements, a programmer can concretely determine at which stage their code is
progressing. With PicoBricks, Micro:Bit includes 25 LEDs (5x5 Matrix) and a 128x64 OLED
screen. When starting robotic coding with PicoBricks, printing "Hello World" on the OLED

screen and winking with matrix LEDs are equally straightforward.

OProject Details:

In this project, we will make the emoji we created using the Micro:Bit Matrix LEDs wink

while displaying "Hello World" on the OLED screen.

@®Connection Diagram:

You can prepare this project without making any wiring connections.

17

O Project Images:

18

OMicroBlocks Code of The Project:

Z blink

[{=Tv I N+ I Vo B - SV I S

NN NNNNNNRERBRRBRRRHR B -
SN ONn R WNRE®WL OO R WNRE®

o oW W W W W WWWWWNN
NS W~ DWW WNRE WO X

#Blink Project
from microbit import =
from picobricks import =

Function Initialization

oled = SSD1306()

oled.init()

oled.clear()
oled.add_text(0,0,"Hello World")

#smile images

pb_smile = [
i, 1, 0, 1, 11,
[1J 1, @, 1, 1],
[@J 0’ 0) GJ @]’
(i, o, 0, 0, 11,
[@J 1, l, 1, @],
1
#blink images
pb_blink = [
[1J 1, 0, G, @],
[1J 1’ 0)]‘J 1]’
(e, o, 0, 0, 0],
[1J 0, @, @, 1],
[@J 1’ 1, 1! G]’
1

while True:
for y in range(5):

sleep(500)
for y in range(5):

sleep(500)

for x in range(5):
if pb_blink[y][x] == 1:
___Tdisplay.set_pixel(x, v,
else:
___Wdisplay.set_pixel(x, v,
for x in range(5):
if pb_smile[y]l[x] == 1:
___Wdisplay.set_pixel(x, v,
else:
___Wdisplay.set_pixel(x, Y,

9)

0)

9)

0)

19

Action
Reaction

Action-Reaction Project

As Newton explained in his laws of motion, a reaction occurs against every action.
Electronic systems receive commands from users and perform their tasks. Usually a
keypad, touch screen or a button is used for this job. Electronic devices respond verbally,
in writing or visually to inform the user that their task is over and what is going on during
the task. In addition to informing the user of these reactions, it can help to understand

where the fault may be in a possible malfunction.

Buttons are circuit components through which we can provide input. Different types of
buttons are used in electronic systems: toggle switches, push buttons and more.
PicoBricks has a total of 3 push buttons, with 1 on the potentiometer and button module
and 2 on the Micro:Bit. Push buttons function similarly to switches; they conduct current
when pressed and do not conduct when released. PicoBricks has a total of 3 push
buttons, with 1 push button on the potentiometer and button module, and 2 push
buttons on the Micro:Bit. Push buttons operate like switches. Push buttons transmit

current when pressed and do not transmit when released.

0 Project Details:
In the project, when the button on the potentiometer & button module is pressed, we will

make the smiley face emoji we created on the Micro:Bit LED matrix blink.

@ Connection Diagram:

You can prepare this project without making any cable connections.

21

Project Images:

o WNH P dWaL

£ picobricks

A ﬂ‘w
=18

e -
. 2C Address0x39

= «f 'WNH ¥ dWal = T sa3Tqou =

22

& picobricks

= WIRELESS % » MOTOf

OMicroBlocks Code of The Project:

£ action-reaction

W o~ 3O bk WN -

AA OB A B R A DWW WWWWWWWWNNRNNNNNNRNRNRNDR R B e e e e
4O R WNREREDOHNOOPNEWNRE, @UO~N0NEWNREOOD~NOWHSRWNIERO

#Action—-Reaction
from microbit dimport =
from picobricks import %

Pin Initialization
Button_Pin = pin2

Function Initialization

oled = S5D1306()

oled.init()

oled.clear()
oled.add_text(0,0,"Hello World")

#smile images

pb_smile = [
[1J 1’ @, 1, 1]’
[1, 1, o, 1, 17,
[@, 0, 05 @, 0]’
[l, @, B, @, 1]’
[EJJ 1’ l, 1, G]’
]
#blink images
pb_blink = [
[1, 1, o, @, ol,
[l, 1, 05 1, 1]’
[EJ, @, B, @, G]’
[lJ @’ @, g, 1]’
[E)J 1’ 1, 1, B]’

while True:

button = Button_Pin.read_digital()

if button == 1:

for y in range(5):

for x in range(5):
if pb_blink[y][x] == 1:
___]display.set_pixel(x, Vs,
else:
___]display.set_pixel(x, Y,

else:

for y 1in range(5):

for x in range(5):
if pb_smile[y][x] == 1:
___]display.set_pixel(x, Y,
else:
___]display.setipixel(x, Vs

9)

0)

9)

0)

23

Color Cards Project

In these days, sensors that perceive the color of passing objects are commonly used in
factories to alleviate workforce. For instance, different products moving on a production
line can be directed to the correct conveyor belt thanks to color-sensing sensors. Many
sectors employ more advanced versions of these sensors in their factories due to this
feature. With the gesture module (color and motion sensor) we will use in this project, we

can detect the colours of objects around PicoBricks.

The gesture module produces three numerical outputs as R (RED), G (Green), and B
(BLUE) while detecting the colors of the object in front of it. When we use these outputs
as the values of the RGB LED, a single colour value is formed, and this colour is the colour

of the object in front of the gesture sensor.

The environment light level, distance to the object, and the object's opacity

can affect the value detected by the gesture module. The recommended

distance should be around 5 cm on average.

0 Project Details:

In this project, we will enable the gesture module to detect the colors of color cards we
create by cutting colored cardboard, colored A4 paper, etc. This way, we will ensure that
all 3 RGB LEDs in the RGB LED module light up in the same color. To do this, let's hold

these colored papers in front of the gesture module.

25

@ Connection Diagram:

You can prepare this project without making any cable connections.

0 Project Images:

26

OMicroBlocks Code of The Project:

W oo~ s WN =

B R R W W WWWWWWW WNNNNMNMNMNNNMNMNNNMNRERERERERRRBRBR
W NMFHGGWLONDWURWNEREGGOLOGONOWODLHLWNIERERWLOGN®OWDBDWNERO

Z Color-Cards

#Color Cards Project
from microbit import =*
from picobricks import =*
import neopixel

import gc

RGB_Pin = pin8 # Pin connected to the NeoPixel strip
Num_ Leds = 3 # Number of LEDs in the strip

Initialize the APDS9960 color sensor

apds = APDS9960()

apds.init_color_sensor()

gc.collect() # Collect garbage to free up memory

Initialize the NeoPixel strip
np = neopixel.NeoPixel(RGB_Pin, Num_Leds)

while True:
Read the RGB values from the color sensor
r_color = apds.color_value("red") or @

sleep(100)
g_color = apds.color_value("green") or @
sleep(100)
b_color = apds.color_value("blue") or 0
sleep(100)

print("red")
print(r_color)
print("green'")
print(g_color)
print("blue™)
print(b_color)

r=round(round(r_color - ®@) = (255 - @) / (1023 - 0) + 0)
g=round(round(g color - @) = (255 -0) / (1023 - 0) + 0)
b=round(round(b color - ®) = (255 - @) / (1823 - 0) + Q)

Set the color of the NeoPixels

np[0] = (r, g, b)

np[1] = (r, g, b)

np[2] = (r, g, b)

np.show() # Update the NeoPixels to show the new colors
sleep(100) # Wait for half a second before the next update

27

PicoBricks Piano Project

Advancements in electronics have led to the digitization of music instruments that were

difficult and expensive to produce. Pianos are at the forefront of these instruments. Each
key of digital pianos generates electrical signals at different frequencies, in this way,
allowing them to play 88 different notes from their speakers. Factors such as the delay
time of the keys on digital instruments, the quality of the speakers, and the resolution of
the sound have emerged as quality-affecting elements. In electric guitars, vibrations on
the strings are digitized instead of keys. In wind instruments, played notes can be
converted into electrical signals and recorded through high-resolution microphones
attached to the sound output. These developments in electronics have facilitated access

to high-cost musical instruments and diversified music education.

In this project, we will create a touch-sensitive piano by using the PicoBricks Touch &

Piano module.

0 Project Details:

In this project, we will use the PicoBricks Touch & Piano module to play the desired note
on the buzzer of the Micro:Bit based on the touch sensor. We will print the value of the
pressed note on the Micro:Bit Matrix LEDs, and we will also display the texts "PicoBricks"

and "Piano" on the PicoBricks OLED screen.

29

@ Connection Diagram:

You can prepare this project without making any cable connections.

0 Project Images:

B picobricks

30

O MicroBlocks Code of The Project:

W o~ R W N e

N NNRNNNRNNNRRRRB 2 3 9 3 |2 @3
X~ E WNRER@OI~NOWMAWNR®

£ picoBricks-piano

#Piano Project]
from microbit import =
from touchsensor import =

touchsensor = CY8CMBR3116()
touchsensor.init()

while True:

touchsensor.PlayPiano()
data = touchsensor.ReadButton()
#print(data)

if data == 7:
___]display.show('c‘)
elif data == 8:
___]display.show('D‘)
elif data == 9:
___]display.show('E‘)
elif data == 10:
___]display.show('F‘)
elif data == 11:
___]display.show('ﬁ‘)
elif data == 12:
___]display.show('A‘)
elif data == 13:
___]display.show('B‘)
elif data == 14:
___]display.show('c‘)

31

n

RGB LED
Control Panel

RGB LED Control Panel Project

In these days, RGB LEDs, used in various areas such as billboards, traffic lights, warning
signs, etc., have a fundamental feature of being able to obtain intermediate colors by
taking values between 0-255 for red, green, and blue colours. In fact, with RGB LEDs, we

can create animations by changing colors on a panel we create.

There are three RGB LEDs on PicoBricks. By using the MicroBlocks editor, we can obtain
various color outputs by setting the desired RGB values for each of these RGB LEDs. In
this project, we will examine in detail how RGB LEDs work by changing color values with

the potentiometer module and buttons.

In this project, we will create a touch-sensitive piano by using the PicoBricks Touch &

Piano module.

0 Project Details:

Using the PicoBricks potentiometer module, we will adjust color values between 0-255.
By pressing the button on the PicoBricks Potentiometer & Button module, we will set the
color value to red; by pressing Micro:Bit A button, we will set it to green, and by pressing
Micro:Bit B button, we will set it to blue. This way, we will observe the instant changes in
the values of the three RGB LEDs on the PicoBricks RGB LED module. At the same time,
the color values will be updated on the PicoBricks OLED screen each time we press a
button.

@ Connection Diagram:

You can prepare this project without making any cable connections.

33

0 Project Images:

34

©® MicroBlocks Code of The Project:

W 00 ~N 3§ W kW

oMo oo O UL mn s s s s s R R W W W W W W W N RNNRNNRNNNN e e e e e e
AN R MO O NOUNDE WNRSLDO-OW0NhWNELD NN DEWNEDOONOUHRWNIROWDW-OUWAEWNROD

Z RGB-LED-Control-Panel

#RGB LED Control Panel Projects
from microbit dimport *
from picobricks dimport %

import

neopixel

Pin Initialization
RGB_Pin = ping

Num_ Leds = 3

Pot_Pin = pinl
Button_Pin = pin2

Function Initialization

oled =

$SD1306()

oled.init()
oled.clear()

np = neopixel.NeoPixel(RGB_Pin, Num_Leds)

#Neopixel
np[e] = (8, 0, 0)

np[1] =

(0, 0, 0)

np[2] = (0, 8, 0)
np.show()

pot_value=0
counter=e

r=0
g=0
b=0

while True:

if

if

oldpot=pot_value
pot_value = round(round(Pot_Pin.read_analog() - @) + (255 -0) / (1023 -0) + @)

oldpot!=pot_value:

_| oled.add_text(5,3,"
oled.add_text(5,3,str(int(pot_value)))
oled.add_text(1,8,"R __ G
button = Button_Pin.read_digital()

button==1:
display.show('R")
o_r=r

r = pot_value

if o_r 1= r:

button_a.is_pressed():
display.show('G")
o_g-E

g=pot_value

if o_g==g:

button_b.is_pressed():
display.show('B")
o_b=b

b=pot_value

if o_b==b:

#Neopixel
nple] = (r, g, b)
np[1] = (r, g, b)
np[2] = (r, g, b)
np.show()

|01ed.add_text(l,2,
oled.add_text(1l,2,str(int(pot_value)))

|oled.add_text(5,2,
oled.add_text(5,2,str(int(pot_value)))

|oled.add_text(9,2,
oled.add_text(2,2,str(int(pot_value)))

"

"

u)

B")

II)

II)

n)

35

%)

|

Thermometer

Thermometer Project

Sensors are the sensory organs of electronic systems. To perceive, we use our skin, eyes for
seeing, ears for hearing, tongue for tasting, and nose for smelling. Picobricks already has
Many sensory organs (sensors), and new ones can also be added. By using sensors such as
humidity, temperature, light, and many others, you can interact with the environment.
PicoBricks can measure ambient temperature without the need for any other
environmental components.

Ambient temperature is used in situations where continuous monitoring of temperature
changes is required, such as in greenhouses, incubators, and environments used for
transporting medications. If you are going to perform a task related to temperature
changes in your projects, you should know how to measure ambient temperature. In this
project, you will prepare a thermometer with PicoBricks that displays ambient
temperature on the OLED screen. Using the PicoBricks potentiometer module, you can
instantly change the displayed temperature value on the OLED screen between

Fahrenheit and Celsius.

0 Project Details:

Thanks to the PicoBricks Temperature & Humidity module, we will display the temperature
and humidity values detected from the environment on the OLED screen by using the

Potentiometer module, either in Celsius or Fahrenheit.

@ Connection Diagram:

You can prepare this project without making any cable connections.

Nnmyy, .

”Illlll‘

37

ject Images

ojec

OPr

¢

38

O MicroBlocks Code of The Project:

& Thermometer a @
1 #Thermometer Project
2 from microbit import =* S
3 from picobricks import =* =
B C
5 # Pin Initialization
& Pot_Pin = pinl
T
8 # Function Initialization
9 oled = $SD1306()
10 oled.init()
11 oled.clear()
12 shte = SHTC3()
13
14 oled.add_text(0,0,"TEMP:")
15 oled.add_text(o,1," m
16 oled.add_text(0,3,"HuM:™)
17
18 def celsius():
19 display.show(Image('00009:"
20 '99900: "'
21 90000 "
22 '9peee:!
23 199900"'))
24 def Fahrenheit():
25 display.show(Image('99909:"
26 '9p000: !
27 '99900:"'
28 '90000: "
29 190000"'))
30
31 while True:
32]
33 temp = shtc.temperature()
34 hum=shtc.humidity()
35 pot_value = round(round(Pot_Pin.read_analeg() - 0) = (2 - 1) / (1823 - 0) + 1)
36 if pot_value==1:
37 celsius()
38 temp=round (shtc.temperature())
39 else!
40 Fahrenheit()
41 temp=round((9*shtc.temperature())/5 + 32)
42 oled.add_text(5,0,str(temp))
43 oled.add_text(5,3,str(round(hum)))

39

Smart Cooler Project

To cool off during the summer months and warm up in the winter months, air
conditioners are used. Air conditioners adjust the heating and cooling degrees based on
the temperature of the environment. Ovens, on the other hand, strive to reach and
maintain the temperature value set by the user while cooking. Both of these electronic
devices use special temperature sensors to control the temperature. Additionally, in
greenhouses, temperature and humidity are measured together. To maintain a balance at

the desired level, a fan is used to provide air circulation.

You can measure temperature and humidity separately with PicoBricks and interact with
the environment using these measurements. In this project, we will prepare a cooling
system with PicoBricks that automatically adjusts fan speed based on temperature. This
way, you will learn about the operation of a DC motor system and how to adjust motor

speed.

0 Project Details:

In this project, we will adjust the speed of the fan connected to the motor driver based on
the value obtained from the temperature and humidity module. The fan connected to the
motor driver will operate when the temperature exceeds a certain value. If the temperature

falls below a certain value, the fan will stop.

@ Connection Diagram:

You can prepare this project without making any cable connections.

a1

0 Project Images:

42

@ MicroBlocks Code of The Project:

W0 o0~ Wk WK

e e e e i e e =
W oo ~NOUnhWNRE O

20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35

Z Smart-Cooler

#Smart Cooler Project
from microbit import =
from picobricks import =*

Function Initialization
oled = SSD1306()
oled.init()

oled.clear ()

shtc = SHTC3()

motor = motordriver()

def celsius():
display.show(Image('00009:"'
'099006: "'
'90000: !
'9pEe6: "
1099600'))
celsius()

while True:

temp = shtc.temperature()
hum=shtc.humidity()
oled.add_text(®,0,"TEMP:")
oled.add_text(5,0,str(float(temp)))
oled.add_text(®,1,"HumM:")
oled.add_text(5,1,str(float(hum)))

if temp>25:
motor.dc(1,round(motorSpeed),1)

oled.add_text(0,2,"Fan Speed:™)

else:

|motor.dc(1,®,l)

motorSpeed=round(shtc.temperature() - 0) » (180 -0) / (40 -0) + 0

oled.add_text(5,3,str(round(motorSpeed)))

43

W)

Night and Day Project

How about playing the Day and Night game electronically, a game often played in schools?
In this game, when the teacher says "night," we bend our heads, and when the teacher
says "day," we raise our heads. It's a game that involves using your attention and reflexes.

In this project, we will use a 0.96" 128x64 pixel 12C OLED screen. Since OLED screens can

be used as an artificial light source, you can reflect the characters on the screen onto any
desired plane using a lens or a mirror. Systems that can project information, road, and

traffic data onto smart glasses and car windows can be created using OLED screens.

Light sensors are devices that can measure the light levels in the environment, also known
as photodiodes. The electrical conductivity of the sensor changes when exposed to light.
By coding, we will control the light sensor and develop electronic systems affected by the

amount of light.

0 Project Details:

First, we will provide the player to press the button to start the game. Then, on PicoBricks'
OLED screen, we will randomly display the expressions NIGHT and DAY for 2 seconds each.
If the word NIGHT is displayed on the OLED screen, the player must cover the LDR sensor
with their hand within 2 seconds. If the word DAY is displayed on the OLED screen, the
player must remove their hand from the LDR sensor within 2 seconds. Each correct
response from the player will earn them 10 points and create a checkmark (¥) icon on the
Micro:Bit Matrix LEDs. When the player gives an incorrect response, the game will end, and
the screen will display a written message indicating the end of the game along with a
cross (X) icon on the Matrix LEDs. The buzzer will play a sound in a different tone, and the
OLED screen will show the score information. If the player achieves a total of 10 correct
responses and earns 100 points, the message "Congrats!!!" will be displayed on the OLED

screen at the designated positions.

45

@ Connection Diagram:

You can prepare this project without making any cable connections.

46

OMicroBlocks Code of The Project:

W o~ 3 ks W N

MR R AR R R DR R R R WWWWWWWWWWNNNRNRNNNNNNRRERRBRRRPRQB B
H @0 X NN AEWNREEO® 0N RWRR, OL®-NOWVEWND RO =NDWORWNR®

Z Night-and-Day

#Night and Day Projects
from microbit import =%
from picobricks import *
import neopixel

import random

import music

Pin Initialization
LDR_Pin = pin®@
Button_Pin = pin2
RGB_Pin = pin8

Num Leds = 3

Function Initialization

oled = S5D1305()

oled.init()

oled.clear()

np = neopixel.NeoPixel(RGB_Pin, Num_Leds)

counter=0
falseValue=0

button = Button_Pin.read_digital()

while Button_Pin.read_digital()==0:
oled.add_text(0,1,"Press BUTTON")
oled.add_text(2,2,"to START!")

oled.clear()

while counter!=100 and falsevValue==0:
light = LDR_Pin.read analog()
rand=random.randint(1l, 2)

if rand==1:

~ | oled.add_text(@,0,"NIGHT")
else:

| oled.add_text(e,0,"DAY")
sleep(3000)

light = LDR_Pin.read_analog()
if Light<60® and rand==1:
display.show(Image.YES)

counter=counter+10
elif light>60 and rand==1:
display.show(Image.NO)
falseValue=1

elif light>60 and rand==2:
display.show(Image.YES)
counter=counter+10

else!
display.show(Image.NO)
falseValue=1
oled.clear()

47

n

Fizz

7

Fizz - Buzz
Game

Fizz n

Fi
8 ZZ

Fizz - Buzz Game Project

There are some games that every programmer spends time on. Fizz Buzz is one of them.
Every programmer who has made some progress in a programming language has created
the algorithm for the Fizz-Buzz game, aiming to master that language by writing this
game. The Fizz-Buzz game is frequently preferred in programming language education
because its algorithm includes both conditional statements and loop structures, helping
to grasp the steps of computational thinking. At the same time, while playing this game,
we improve our quick decision-making and mathematical thinking skills.

Thanks to PicoBricks, we can code this game by using electronic components and

experience it physically.

0 Project Details:

In this project, we will create the Fizz-Buzz game algorithm and code using PicoBricks
along with the button, RGB LED, and OLED screen module with Micro:Bit. The Fizz-Buzz
game is played by counting numbers from 1to 100. Starting from 1, when a number that

is a multiple of 3 is reached, "Fizz" is said. When a number that is a multiple of 5 is reached,
"Buzz" is said. When a number is a multiple of both 3 and 5, "Fizz-Buzz" is said instead of

the number.

0 Connection Diagram:

You can prepare this project without making any cable connections.

49

0 Project Images:

Priss e
A Button ko

reark
Fizz-Buzz

Press he PB
Bukbon

50

OMicroBlocks Code of The Project:

£ Fizz-Buzz-Game a @
1 #Fizz-Buzz Game Projects
2 from microbit import = S
3 from picobricks import =* .
4 Admport neopixel .
5 dmport music
6
7 # Pin Initialization
8 Button_Pin = pin2
9 RGB_Pin = pin8
16 Num_Leds = 3
11
12 # Function Initialization
13 oled = SSD1306()
14 oled.init()
15 oled.clear()
16 np = neopixel.NeoPixel(RGB_Pin, Num_Leds)
17
18 button = Button_Pin.read_digital()
19 display.show(Image.HEART)
20
21 oled.add_text(2,0,"Press the")
22 oled.add_text(1,1,"A Button to")
23 oled.add_text(3,2,"start")
24 oled.add_text(2,3,"Fizz-Buzz")
25
26 def left_image(): =
27 display.show(Image ('00900:"'
28 'po000:!
29 '99999:!
30 '09000: "
31 100900"))
32 #Neopixel
33 np[e] = (@, 0, 0)
34 mp[1] = (e, 8, 0)
35 np[2] = (8, 0, 0)
26 np.show()
37
38 while True:
39 if button_a.is_pressed():
40] oled.clear ()
41 counter=1
42 left_image()
43 while counter<100:
44 oled.add_text(0,0,"Press the PB")
45 oled.add_text(3,1,"Button")
46 oled.add_text(5,2,str(counter))
47 button = Button_Pin.read_digital()
48 if button==1:
49 "~ | counter=counter+1
50 music.play(['b'])
51 oled.add_text(3,3,")
52 np[0] = (@, 0, 0)
53 np[1] = (0, @, @)
54 np[2] = (6, 0, 0)
55 np.show()
56 if counter % 3 == @:
57 oled.add_text(3,3,"Fizz")
58 np[0] = (255, @, 0)
59 np[1] = (255, 0, 0)
60 np[2] = (255, @, 0)
61 np.show()
62 if counter % 5 == @:
63 oled.add_text(3,3,"Buzz")
64 np[0] = (@, 0, 255)
65 np[1] = (@, @, 255)
66 np[2] = (@, 0, 255)
67 np.show()
68 if counter % 15 == 0:
69 oled.add_text(3,3,"Fizz-Buzz")
70 np[0] = (128, 0, 128)
71 np[1] = (128, 0, 128)
72 np[2] = (128, 0, 128)
73 np.show()

51

Depth Meter Project

Sometimes, we use depth-measuring machines to measure the quantity of a beverage or

mixtures of liquid materials poured into a glass. The fundamental variable that needs to

be known for these machines to measure depth is the depth value measured when the
container is empty. After defining this information to the measurement devices, the device
performs the measurement process by using various sensors such as ultrasonic distance

sensor, IR sensor, etc.

0 Project Details:

In this project, we will control the water pump connected to the motor driver based on
the value measured by the ultrasonic distance sensor we connect to PicoBricks. We will
transfer the desired amount of liquid from the container filled with liquid to the empty

one. To determine the depth of the glass, we will use the potentiometer & button module.

@ Connection Diagram:

You can prepare this project without making any cable connections.

ey

53

|

0 Project Images:

54

O MicroBlocks Code of The Project:

Z Depth-Meter a @
1 #Depth Meter Projects
2 from microbit import = 5
3 from picobricks import * .
. e
5 # Pin Initialization
5 Pot_Pin = pinl
7 Button_Pin = pin2
8
9 # Function Initialization
10 oled = sSSD1305()
11 oled.init()
12 oled.clear()
13 motor = motordriver()
14 button = Button_Pin.read_digital()
15
16 while button_a.is_pressed()==0:
17 oled.clear ()
18 glassDeepValue=10
19 oled.add_text(2,0,"Press the")
20 oled.add_text(3,1,"A Button")
21 oled.add_text(5,2,str(glassDeepValue))
22 sleep(100)
23
24 while True:
25 oled.clear()
26 distance = measure_distance()
27 print(distance)
28 waterDeepValue=glassDeepValue-round(distance)
29 oled.add_text(0,2,"Depth:")
30 oled.add_text(8,2,str(waterDeepValue))
31 if waterDeepValue<(glassDeepValue-4):
32 ~ | motor.de(1,150,1)
33 else:
34 | motor.dc(1,0,1)
35 sleep(100)

55

A=

Morse Code
Cryptography

B

c=0—9@

Morse Code Cryptography Project

People sometimes utilize some passwords to protect their physical belongings or

written/visual content. The diversity of symbols used in passwords contributes to the

strength of the password. Similarly, not using easily guessable personal data in passwords

will enhance the strength of your password.

Cryptography refers to the processes that render readable data incomprehensible to

unauthorized individuals.

In Morse Code, there are distinct long and short signals corresponding to each letter. Each

character of the text to be encrypted is encoded using the short and long signals in Morse

Code. When these signals are combined as a whole and deciphered, the encrypted text is

revealed. The long and short signals in Morse Code can be created using sound or light.

The most well-known example of this is the SOS distress signal. With a flashlight or similar

light source, a call for help can be made by sequentially emitting three long, three short,

and three long signals. This is because in Morse Code, the letter "s" is represented by (...)

three short signals, and the letter "0" is represented by (---) three long signals

S

(eo®e®)

O

(---)

® Morse Code Alphabet:

A@o=
Feoe=—o
K =@
Po==9
vUeeo=—
Z =—Q 0

Cmo=0
Heeoeoo
M == ==
Re=o
W@ = ==

57

S

(eo0®)

D=0o®

N=¢@
Seoeo

0 Project Details:

In this project, we will encrypt the specified text by using Morse Code within the code,
utilizing the PicoBricks RGB LED module. Each character of the encrypted text will be
displayed on the Micro:Bit matrix LED, and its Morse Code equivalent will be shown on the
PicoBricks OLED screen.

@ Connection Diagram:

You can prepare this project without making any cable connections.

0 Project Images:

58

O MicroBlocks Code of The Project:

W oo~ b W=

Mo oA D R A B RS A DR W W W W W WWWWWNNNNNMNNMNNRMNNEREERRH FHH B H B 92 9
= @ W o~k WwWNREOORS DU EeEWNREDW®A O WUV HWKNERDWD D= 00U &b WK }=oo

Z Morse-Code-Cryptography

#Morse Code Cryptography
from microbit import =
from picobricks import =
import neopixel

Pin Initialization
RGB_Pin = pin8
Num_Leds = 3

Function Initialization

oled = SSD1366()

oled.init()

oled.clear()

np = neopixel.NeoPixel(RGB_Pin, Num_Leds)

#Neopixel
np[@] = (e, O,
np[1] = (e, O,
np[2] = (e, O,
np.show()

0)
0)
0)

alphabet =
Ijl,
Irl,

[lal,Ibl,IC|,Idl,‘el,lfl,lgl,lhl’l-il,
Ikl,‘ll,!ml’ Ipl’ Iq‘,
ISI,‘tI,'UI’ IVI, lwl,lxl, Iy‘,
Ill,l?l,!BI’I4|’I5!, I6!’

|8I, |9I,!@I]

lnl,lo|,

IZI,
! I
[

while True:

if button_a.is_pressed():

passwordText="picobricks"

for i 1in range((len(passwordText))):
oled.clear()
oled.add_text(0,0,str(passwordText))

59

display.show(passwordText[i])
oled.add_text(0,1,str(morse[alphabet.index(passwordText[i])]))
j=0
for j in range(len(morse[alphabet.index(passwordText[i])])):
oled.add_text(®,2,str(morse[alphabet.index(passwordText[i])][j]1))
if morse[alphabet.index(passwordText[i])][j] == '."'
np[®] = (255, 255, 255)
np[1] = (255, 255, 255)
np[2] = (255, 255, 255)
np.show()
sleep(500)

Car Parking
System

Car Parking System Project

Today, buildings such as hospitals, schools, business centers, etc., often have open or
closed parking lots where a large number of people enter and exit. The main reason for
the construction of these parking lots is the significant increase in automotive usage in
cities. Barrier systems are installed at the entrances of these parking lots to control access.
While people were assigned to control these barrier systems in the past, nowadays, with
the advancement of sensor technologies, automatic access systems are used. Vehicles are
detected using various sensors, the barriers are raised using motor systems, and vehicle

passage is allowed.

0 Project Details:

In this project, we will use the ultrasonic distance sensor connected to PicoBricks to create
a barrier system by using waste bins found in our home, depending on the value detected
by the sensor. By moving the servo motor connected to the prepared barrier system to the
desired angle and we will allow vehicle passage. A checkmark icon (¥/) will appear on the
Micro:Bit Matrix LED when permission is granted for passage, and a cross (X) icon will

appear when permission is denied.

@ Connection Diagram:

You can prepare this project without making any cable connections.

HC-SRO4

Servo Motor

61

0 Project Images

62

O MicroBlocks Code of The Project:

WL 0~ O WLk WNE=

o S = T R R T T
00 ~N N R WN R

£ Car-Parking-System

#Car Parking System
from microbit dimport =
from picobricks import =

motor = motordriver()
motor.servo(1,90)

while True:

distance = measure_distance()
#print(distance)

it round(distance)<6:
motor.servo(1,180)

display.show(Image.YES)
sleep(1000)
else:

display.show(Image.NO)
motor.servo(1,180)

63

n

Table Lamp Project

Many of us, for reasons such as studying, reading books, preparing reports, etc., prefer to
illuminate only our desks instead of turning on all the lights in the room at night. The desk
amps we use at home typically use RGB LEDs as light sources. This is because RGB LEDs
can emit light in desired color tones. Exposure to certain lights for extended periods can
negatively impact our eye health. In such cases, quick transitions between desired colors
can be achieved using the color values of RGB LEDs, ranging from O to 255. Additionally,
RGB LEDs can operate without requiring large power sources. Therefore, desk lamps can

be easily illuminated with their own power sources.

In this project, we will add various features to a table lamp in our home by using
PicoBricks modules.

(You can use any table lamp in your home.)

0 Project Details:

In this project, we will illuminate a desk lamp by using PicoBricks RGB LED and Gesture
modules based on the directional movements we make with our hands. After placing the
Gesture and RGB LED modules, when we move our hand to the left over the gesture
module, the RGB LEDs illuminate according to the color counter. After moving our hand
up or down over the gesture module, when we move our hand to the right again, the color
of the RGB LED changes. To turn off the desk lamp, you can move your hand to the right

over the gesture module.

@ Connection Diagram:

You can prepare this project by breaking PicoBricks modules at proper points.

«\

65

Addressable Ring
RGB LEDs

0 Project Images:

66

O MicroBlocks Code of The Project:

00~ @ kW N

oA B R AR BR R R BB WWWKWWLWWWNNNRNNNRONNNNRRRRBRHRH R A B
= & W o0~ MU s W NS W~ DU E WK =D WO~ O WNREGO OO0 EWNREWO

Z Table-Lamp-Project

#Table Lamp Project
from microbit dimport =

from picobricks import =

import neopixel

Pin Initialization

RGB_Pin

Num Leds = 3 #Enter the number of LEDs

= ping

Function Initialization
apds = APDS9960()
apds.init_gesture_sensor()

np = neopixel.NeoPixel (RGB_Pin, Num_Leds)

#Neopixel

np[@]
np[1]
np[2]

(e, @, @)
(e, 0, @)
(0, 0, 0)

np.show()

colorCounter=0

display.

show(Image.HAPPY)

r=[255,128,188,62,139,255,18]
g=[255,135,0,177,50,60,168]
b=[255,193,0,136,0,0,168]

while True:

gesture = apds.read_gesture()
if gesture=="RIGHT":

___-np[ﬂj = (r[colorCounter], gl[colorCounter], b[colorCounter])
np[1] = (r[colorCounter], g[colorCounter], b[colorCounter])
np[2] = (r[colorCounter], g[colorCounter], b[colorCounter])

np.show()
display.show(Image.HEART)

elif gesture=="LEFT":

display.show(colorCounter)
nple] = (e, 0, 0)

np[1] = (@, 8, @)
np[2] = (@, 0, 0)
np.show()

elif gesture=="UpP":

colorCounter=colorCounter-1

if colorCounter<o:
|c010rCounter=6
display.show(colorCounter)

elif gesture=="DOWN":

colorCounter=colorCounter+1
if colorCounter>6:

_l colorCounter=0
display.show(colorCounter)

67

coin
Dispenser

Coin Dispenser Project

Some people dislike carrying coin in their pockets. This might be due to the extra weight
it adds or the noise it makes while walking. For others, collecting coins could be a hobby.
However, when collecting coin, we may struggle to separate them. The easiest way to
separate coin is by their dimensions. Each coin with different values also has different
dimensions. By using the dimensions of the box where we collect the coins, we can
quickly separate them. This way, each coin fits into its corresponding box based on its
value and can be separated quickly. Moreover, this separation process also makes it easier

to count the coins.

0 Project Details:

In this project, we will use a 3D printer to create a coin dispenser that can be controlled
using hand gestures through a gesture module. When we make a rightward gesture with
the gesture sensor, the coin dispenser will use a gear system to launch the bottom coin.

When we make a leftward gesture, the gear system will pull itself to the left.

@ Connection Diagram:

You can prepare this project by breaking down PicoBricks modules at proper points.

Servo Motor

69

@ Project Images:

70

OMicroBlocks Code of The Project:

W o0~ @Rk W N

NN NNNNRRR B B [|2 9 93 &
N B WNMHWOL~NOWMBh WNRM

£ Coin-Dispenser-Project

#Coin Dispenser Project
from microbit dimport =
from picobricks import =

Function Initialization
apds = APDS9960 ()
apds.init_gesture_sensor()
motor = motordriver()

display.show(Image.HAPPY)

def left_image():

display.show(Image('00900:"
'09000: !
'99999:!
'09000: "
1060900'))

def right_image():

display.show(Image('00900:"
'0ee9e:!
'99999:"
'0ee9e:!
1060900'))

n

U

pt

Gesture Controlled
ARM Pan Tilt

Gesture Controlled ARM Pan Tilt Project

Robot arms have replaced human labor in the industrial field. They undertake tasks such
as carrying and rotating loads that are too heavy or large for a human to handle in factories.
Their ability to be positioned with precision up to one-thousandth of a millimeter
surpasses the precision achievable by human hands. When you watch production videos
of automobile factories, you will see how crucial robot arms are. They are called "robots"
because they can perform the same task infinitely by being programmed. The reason for
calling them "arms" is because they have an articulated structure similar to our arms. The
number of axes a robot arm can rotate and move in determines its degrees of freedom.
Robot arms are also used in carving and shaping aluminum and various metals. These
devices, known as 7-axis CNC routers, can shape metals similar to how a sculptor shapes
clay.

Depending on the purpose of use in robot arms, both stepper motors and servo motors

are utilized. PicoBricks enables you to create projects using servo motors.

0 Project Details:

In this project, we will use the "gesture" feature of the PicoBricks gesture module to detect
up-down, right, and left hand movements, and move a pan-tilt system accordingly.
Additionally, when we press the "A" button on the Micro:Bit, we will reset the servo motors

to their initial positions to center the system.

Note: By mounting the RGB LED module on the front surface of this system, we can

create a lighting system that can move in two axes.

@ Connection Diagram:

You can prepare this project by breaking down PicoBricks modules at proper points.

Servo Motor

0 Project Images:

0 Installation Images

©® MicroBlocks Code of The Project:

Z Gesture-Controlled-Arm

W o~ 3N WM

OO o e S S S S B B DS BB WWWWWWWWWIWNRNRMNBMRNRNRRRNNRNR BB e e e e e e
U A WNRLRL IOV AWNRERUOU®~NNOUEA WNKRFQOI~NODOBEWNKOOGUE 00N EWNRLISNNONHWNRO

#Gesture Controlled Arm Pantilt Project
from microbit import #*

from picobricks import =

import music

Function Initialization
apds = APDS9960()
apds.init_gesture_sensor()
motor = motordriver()

motor.servo(1,0)
motor.servo(2,0)

display.show(Image.YES)

def left_image():

] display.show(Image('00900:"
'09000: "
'99999: "
'99000: "
100900'))

def right_image():

display.show(Image ('00900: "
'00090; "'
'99999; "'
'0eE90: !
100900'))

def up_image():

] display.show(Image('00900:"
'09990:"
'90909:"'
'00900:"
'00900'))

def down_image():

display.show(Image('00900:"
'ee900: "
'90909:"
'09990: "'
'90900"'))

while True:

gesture = apds.read_gesture()
if gesture=="RIGHT":
___-motor.servo(l,ﬂ)
right_image()
music.play(['c'])

elif gesture=="LEFT":
motor.servo(1,180)
left_image()
music.play(['c'])

elif gesture=="UP":
motor.servo(2,0)
up_image()
music.play(['c'])

elif gesture=="DOWN":
motor.servo(2,180)
down_image ()
music.play(['c'])

elif button_a.is_pressed():

motor.servo(1,0)
motor.servo(2,0)
display.show(Image.YES)

76

n

)

n

SD

Labyrinth

3D Labyrinth Project

There are multiple ways to exit a maze, but the most well-known method is to follow the
wall with your left/right hand. Although this method may take some time, you can
definitely get out of the maze by consistently touching the wall. Maze tests enhance
problem-solving skills. Someone who frequently solves maze tests can quickly come up
with solutions to the problems they encounter. In this project, we will design a maze and

the necessary mechanical parts to move the maze by using a 3D printer.

0 Project Details:

Let's create a maze project that can move in right, left, up, and down directions by
assembling 3D printer parts as shown in the visuals. To ensure the movement of the

maze in this project, we will utilize two servo motors connected to the PicoBricks motor
driver. The direction keys on the PicoBricks Touch & Piano module will be used to move
the servo motors in the desired direction. By using the Right, Left, Up, and Down direction
keys, we will control the direction and attempt to navigate the ball placed inside the maze

to the exit.

@ Connection Diagram:

You can prepare this project by breaking down PicoBricks modules at proper points.

Servo Motor

78

0 Project Images:

79

0 MicroBlocks Code of The Project:

£ 3D-Labyrinth-Project a @

#3D Labyrinth Project
from microbit import x
from picobricks import =

Function Initialization
oled = S5D1306()
oled.init()

motor = motordriver()
apds = APDS9960()

W NN A WN R

10 apds.init_gesture_sensor()
11 pinl5.set_pull(pinl5.PULL_UP)
12 9r = IRM()

=
& W

def labyrinth_image():

15 display.show(Image('90090:"

16 '99990: "

17 '00099:"

18 '99999:"'

19 1900089'))

20 labyrinth_image()

21 servolValue=45

22 servo2Value=45

23

24 while True:

25 | gesture = apds.read_gesture()

26 oled.clear()

27 motor.servo(l,servolValue)

28 motor.servo(1,servo2Value)

29 sleep(100) 5
30 if gesture == "UP": N
31 servolValue=servolValue-1 -
32 if servolValue==15:

33 _| servolValue=16

34 if gesture == "DOWN":

35 | servolvalue=servolValue+1

36 if servolValue==58:

37 _| servolValue=57

38 if gesture == "RIGHT":

39 servo2Value=servo2Value+l

40 if servo2value==80:

41 _| servo2Value=79

42 if gesture == "LEFT":

43 servo2Value=servo2Value-1

44 if servo2Value==30:

45 _| servo2Value=31

46 oled.add_text(0,0,str(servolvalue))
a7 oled.add_text(0,1,str(servo2value))
48 if button_a.is_pressed():

49] labyrinth_image()

50 servolValue=45

51 servo2Value=45

52 gesture=0

53

@ The STL Files of The Project:

You can access the STL files of the project by scanning the QR code or opening the link in

your browser.

80

Radar Project

The radar is a device that detects objects in its surroundings, their direction of movement,

their speeds, and other values through radio waves. The effective, or ranges, of radars can
vary. Depending on this variation, their applications change. Radars are frequently used to

ensure security in various vehicles such as ships, airplanes, etc., and in military areas.

Since radar operates with radio waves, which sensors on PicoBricks or in the set can we
use to create a sample radar project? Among the PicoBricks modules and sensors in the
set, the sensors with distance measuring capability are the Ultrasonic Distance Sensor
(HC-SRO0O4) and the gesture module. Due to the limited range of distances that the gesture
module can measure, the ultrasonic distance sensor would be more suitable for a project
of this kind.

Ultrasonic distance sensors detect objects around them by using sound waves. As
explained in the diagram below, the distance to the object in front is determined by

calculating the time it takes for the sound wave emitted from the Trig pin to hit the Echo

pin.

Start Pulse

1L =»
4_ —J Echo Time Pulse I— o

Vss =

In this project, we will create a radar project using the PicoBricks, ultrasonic distance

sensor, and servo motor.

82

0 Project Details:

In this project, we will implement a radar project by rotating the servo motor connected

to PicoBricks' motor driver based on the value detected by the ultrasonic distance sensor
connected to the P1-P2 pins, within a 0-180 degree angle. The radar will move in the range
of 0-180 degrees until it detects a value within the range determined by the potentiometer
module. If an object is detected within the specified range, it will stop moving, emit a
warning sound from the buzzer, and display the distance and angle of the object from the

radar on the OLED screen.

@ Connection Diagram:

You can prepare this project by breaking down PicoBricks modules at proper points.

Servo Motor

HC-SRO4

83

0 Project Images:

DEkEcLEd!
L=l o H is
DeEgreesr IS

@ The STL Files of The Project:

You can access the STL files of the project by scanning the QR code or opening the link in

your browser.

84

® MicroBlocks Code of The Project:

Z Radar-Project a @
1 #PicoBricks Radar Project
2 from microbit import =* ja
3 from picobricks import * N
4 Admport music :
5
6 # Pin Initialization
7 Button_Pin = pin2
& Pot_Pin = pinl
9
10 # Function Initialization
11 oled = $5D1306()
12 oled.init()
13 motor = motordriver()
14
15 motor.servo(1,90)
16 angleServo=0
17 radarRange=0
18 c=1
19 button = Button_Pin.read_digital()
20 while Button_Pin.read_digital()==0:
21 oled.clear ()
22 pot = Pot_Pin.read_analog()
23 radarRange=round(round(pot - @) = (160 - 0) / (1023 - @) + 0)
24 oled.add_text(0,0,"Radar Range:")
25 oled.add_text(5,1,str(radarRange))
26 sleep(50)
27 oled.clear()
28
29 while True: =
30 oled.clear () o
31 distance = measure_distance()
32 while round(measure_distance())>= radarRange:
33] oled.add_text(2,2,"Scaning...")
34 motor.servo(l,angleServo)
35 T1f =1l
36 ___]angleServo:angleServo+5
37 if c==0:
38 ___]angleServo=angleServof5
39 if angleServo==180:
40 c=0
41 if angleServo==0:
42 "]e1
43 sleep(10)
44 oled.clear ()
45 objectDistance=round(distance)
416 oled.add_text(2,0,"0bject")
47 oled.add_text(2,1,"Detected!")
48 oled.add_text(0,2,"cm:")
49 oled.add_text(5,2,str(objectDistance))
50 oled.add_text(0,3,"Degreess")
51 oled.add_text(8,3,str(angleServo))
52 music.play(['c'])
53

85

PicoBricks
LoOgo Lamp

PicoBricks Logo Lamp Project

In these days, the usage areas of 3D printers have significantly expanded. 3D printers are

utilized for various purposes in many sectors such as healthcare, automotive, education,
and more. The raw materials used by 3D printers for printing can vary depending on the
intended use of the produced part. For instance, with a 3D printer that uses cement as a
raw material, we can print a house. In this project, we will prepare a lamp by creating color

animations using the 3D-printed PicoBricks Logo and the PicoBricks RGB LED module.

Color animations are used in various areas such as advertising panels, celebration areas,
etc,, to attract attention. In these systems, which are created by illuminating a LED with
different colors at specific time intervals, RGB LEDs are commonly used. The main reason
for the use of RGB LEDs in these systems is the ability to easily create desired color tones

by utilizing color values ranging from O to 255.

0 Project Details:

In this project, we will create color animations by placing the addressable RGB LEDs

connected to the PicoBricks RGB LED module inside the 3D-printed PicoBricks Logo lamp.

@ Connection Diagram:

You can prepare this project by breaking down PicoBricks modules at proper points.

87

@ Project Images:

@ The STL Files of The Project:

You can access the STL files of the project by scanning the QR code or opening the link in

your browser.

@ MicroBlocks Code of The Project:

W o~ Wk WwN =

W oW WWMNMNMNMMNMNNRNRENRNNRRR# /B B 9 95 9 |2
W N R ©IWOo=0W"uu:hwWWwREOILDLH~NDU e WNIEOD

£ PicoBricks-Logo-Lamp-Project

#PicoBricks Logo Lamp Project
from microbit import =%

from picobricks import =
import neopixel

import random

Pin Initialization
RGB_Pin = pin8
Num_Leds = 11 #Enter the number of LEDs

Function Initialization
np = neopixel.NeoPixel(RGB_Pin, Num_Leds)

#Neopixel
np[e] = (0, 6, 0)
np[1] = (0, 6, 0)
np[2] = (0, 0, 0)
np.show()

display.show(Image.HAPPY)
r=[18,128,62,188,139,255]
g=[168,135,177,0,50,60]
b=[168,193,136,0,0,0]

while True:

randColor=random.randint(@, 5)
for i in range(11):
Num_Leds=1
np[i] = (r[randColor], g[randColor], b[randColor])
np.show()
sleep(100)

89

Ferris Wheel

Ferris Wheel Project

A Ferris wheel is an amusement ride where seats are positioned around a circle that
rotates on a central axis. PicoBricks Ferris Wheel is a project kit where you can adjust the
speed of the Ferris wheel based on the value of the potentiometer by using the

potentiometer, motor driver, and mainboard module on PicoBricks.

0 Project Details:

In this project, we will control the rotation speed of the Ferris Wheel based on the speed

of the DC motor by using the PicoBricks Potentiometer module.

@ Connection Diagram:

You can prepare this project by breaking down PicoBricks modules at proper points.

DC Motor

91

0 Project Images:

92

@Setup Steps of The Project:

In this step, you will need . .
1 a screwdriver and pliers. Potentiometer BI'IC‘k.

M3 Nut 4pcs.

Motor Driver Bricks

M3 Nut 3 pcs. e—

M3 x 10 mm Screw 3 pcs.

’—«MS Nut 2pcs.

For T Joint first place the M3 Nut into
the Nest (1) Then, tighten the joint with
using M3 x 10 mm Screw

M3 Nutv;T

I M3 x10 mm Screw 2pcs. T
1 M3 x 10 mm Screw

93

DC Gear Motor

M3 Nut 2 pcs.

— M3 x 30 mm Screw 2 pcs.

6 3pcs.

M3 Nuts 6pcs.

M3 x 10 mm screw 6pcs.

*Complete this step one more
time with the same parts*

M3 25 mm Screw
°

M3 x émm F - F Spacer Nut

DC Motor Hub

M3 x 10 mm Screw 3pcs. .\

M3 x 40 mm F-F Spacer Nuts 3pcs.

L e M3 x 10 mm Screw 3pcs.

94

3mm Plastic Spacer

3 mm Plastic Spacer

M3 Nyloc Nut

You can also use wooden
Wrench for Nyloc Nut.

M3 Nut
M3 6 mm Female Spacer M3 Nyloc Nut

3 mm Plasctic Spacer 3 mm Plasctic Spacer

7 2pcs.

[

*Complete this step five more
time with the same parts*

x6

95

Power Brick

'« RGBLED Brick

Circuit Diagram

>

*If your Ferris Wheel is shaking
while working, you can adjust the
height level as seen in the image.

M3 Nut 4 pcs.

j———————% M3x10 mm Screw 4 pcs.

Setting Up The Circuit

et to know the circuit elements of Mini Tank that we completed the setup and make the circuit setup

coBricks modules.

Power Brick

RGB LED Brick

96

Motor Driver

Potentiometer Brick

DC Gear Motor

© MicroBlocks Code of The Project:

WO~ WU R W N

[
W N =@

14
15
16
17
18

Z Ferris-Wheel

#Ferris Wheel Project
from microbit import =
from picobricks import *

Pin Initialization
Pot_Pin = pinl

Function Initialization
motor = motordriver()

display.show(Image.HAPPY)

while True:
pot = Pot_Pin.read_analog()

speed=round(round(pot - @) = (255 - 0) / (1023 - 0) + 0)

motor.dc(1,speed,1)

97

U

n

Mars
ExXplorer

Mars Explorer Project

Tanks, with their tracked structures, are vehicles that can easily move on rough terrains.

Tracks consist of multiple sequential wheels or rollers surrounded by a belt.

The PicoBricks Mars Explorer Car is a wooden project kit that utilizes two DC motors and
a tracked platform. This robot car, controllable remotely with a remote controller thanks to
the IR receiver, can decide on its movements by detecting surrounding objects through

the front of its distance sensor.

0 Project Details:

In this project, we will control two DC motors that connected to motor driver by using IR
receiver on the PicoBricks wireless module with the remote controller. The robot car moves
in the desired direction thanks to the DC motors. Additionally, if the HC-SRO4 distance

sensor on the robot car kit detects an object within 15 cm, the robot car will stop.

@ Connection Diagram:

You can prepare this project by breaking PicoBricks modules at proper points.

».r .

[| i //\
1§

"L W

n.r ~ .

[i /\
1§

LG N

x2 DC Motor

99

@ Project Images:

100

0 Setup Steps of The Project:

M3 x10 mm Screw 71

M3 Nut

Apply the same steps for other side]

In this step, you will need
a screwdriver and pliers.

M3 x 8 mm Screw 4pcs.

!

ey

M3 x 30 mm Female Spacer

For T Slot joint setup first, place the
M3 Nut into the Nest (1) Then tighten the
Joint with using M3 x 10 mm Screw.(2)

Make sure that this triangle
marker is facing upwards.

Gear DC Motor

cEIED

Wooden Wrench can be
used to increase leverage

’7 M3 Nuts 2 pcs.

e

M3 x 30 mm Screw 2pcs.

101

52pcs.

@ M3 x10 mm Screw 2 pcs. @

'7 PicoBricks Motor Driver Module

M3 x 20 mm Female Spacer 3pcs.

(Please do not over tight)

M3 x12 mm Screw 6 pcs.

M3 Nuts 2pcs.

Make two of these

After this step you can attach 2

cables to motor driver module.
& - L If the gears are not aligned as seen in the image, (1) please
p ® revert the part (2) and then insert it.(3) This will prevent

b issues related to movement instability and tracks being
37 U0 o dismantled while in motion.

M3 Washer

’7 M3 x 50 mm Screw

\ M3 Washer

M3 x 3 mm Plastic Spacer A

M3 x 5 mm Plastic Spacer

102

@ M3 x 12 mm Screw 6pcs.

M3 Nyloc Nut

M3 x 20 mm Female Spacer

L

\ Gear Motor Hub

— 52pcs.

Make one more wheel and attach

Wooden Wrench can be . -
it to DC motors via motor hub.

used for M3 Nyloc Nut but,
pay attention that its not
too tight otherwise, wheel

won't be turning.

Apply the same steps to
other side

.(). f If the gears are not aligned as seen in the image, (1) please
L] /'J revert the part (2) and then insert it.(3) This will prevent
: issues related to movement instability and tracks being

PN ¥
j 37U o dismantled while in motion.

M3 Nut 2pcs.
M3 x 12 mm Screw 2pcs.

Micro:bit MainBoard Brick

(Please do not over tight)

Make sure triangle
v marker is facing

upward while

assembling modules.

@ M3 x10 mm Screw 2 pcs.

WIFI & IR Brick

\; M3 Nuts 2 pcs.

103

| ——— 102pcs. As we approach the process of assembling the body parts together, please
L ensure that all cables are easily accessible for attachment to the mainboard
' you can use cable areas on the parts as seen in the image.

Setting Up The Circuit

Let’s get to know the circuit elements of Mini Tank that we completed the setup and make the circuit setup
with PicoBricks modules.

Power Brick

Motor Driver

WIFi & IR Brick

HC SR04
DC Gear Motor x 2

104

12 2 pcs.

Make sure back side of the upper
and body parts are aligned like
this in the image. this will prevent
dissambling related parts. because
hinge holes are needed to be
aligned for part 11. to work properly
as a bagage door.

Power Brick —————

Wooden Wrench —— 1§

You can place the wooden
wrench as some sort of a key
for baggage door.

M3 x 8 mm Screw 4 pcs.

o

x23

105

Attach the tracks for the other side by
following previous assembly steps.

Assembly is finished and you
can move on to coding steps.

106

® MicroBlocks Code of The Project:

£ Mars-Explorer

W ENOWN R WNH

00 0D Ha NNNNNNNNNDDNDDDANNHDO U U UOTO OO NN E S SS R DR DR BEDLSEWDDWWWWWWRWNRNNNRNNNNRNNRRBRRB R 3 3 3§ &2
O N AEWN RGO 0NN AR WNRGOGLO OO RARWNRODOE~NOUAWNEDSDSWOLGENOWUMEWNEREDRDLOCNOWUVEWNESLC®®~NOOUNMAEWNRNHFELOEAODOUVBAEWNRF

#Mars Explorer Project
from microbit import =
from picobricks import =

Function Initialization
motor = motordriver()
pinl5.set_pull(pinl5.PULL_UP)
ir = IRM()

motor.dc(1,0,1)
motor.dc(2,0,1)

def

.

def

-

def

.

def

def

forward():
motor.dc(1,255,1)
motor.dc(2,255,1)

backward():
motor.dc(1,255,0)
motor.dc(2,255,0)

left():
motor.dc(1,0,1)
motor.dc(2,255,1)

right():
motor.dc(1,255,1)

motor.dc(2,0,1)

stop():

motor.dc(1,0,1)
motor.dc(2,0,1)

def

def

def

left_image():

display.show(Image('00900:"'
'09000: "
'99999: "
'09000: "
100900"))

right_image():

display.show(Image('00900:"
'00090: "
'99999:"'
'00090: "
100900'))

up_image():

display.show(Image('00900:"
'09990: "
'90909:"
'00900: "
100900))

def

down_image():

display.show(Image('00900:"
'00960: '
'90909: "
'09990:"'
100900'))

while True:

distance = measure_distance()
#print(distance)
key=ir.get(pinl5)
if(key!=-1):
] print(key)
if key == 24:

if distance<=15:

~[stop)

else:
forward()
down_image ()
elif key == 90:
right()
right_image()
elif key == 8:
left()
left_image()
el‘ilf key == 82!
backward ()
—‘ up_image ()
#sleep(100)
else:
stop()
print(key)
display.show(Image.HAPPY)

107

Trash Tech

e

Trash Tech Project

The Trash Tech Kit is an educational robotics programming kit designed to gain

environmental awareness in children.

The Trash Tech is a fun kit that allows you to assemble the wooden pieces, sensors, and
PicoBricks modules included in the set as specified in the installation guide. The goal of
the project is to create an electronic trash bin that opens its lid by detecting objects using

the HC-SRO04 distance sensor located at its front.

0 Project Details:

In this project, we detect the distance of our hand using the HCSRO4 distance sensor and
move the servo motor connected to the motor driver to the desired angle. This way, the lid

of the trash bin opens.

@ Connection Diagram:

You can prepare this project by breaking the PicoBricks modules at suitable points.

109

0 Project Images:

110

0 Setup Steps of The Project:

l »

(1)

Attach the servo horn to the servo motor (1)

(2)

Then slowly turn the servo horn clockwise

until it stops. It is not a problem if the servo
horn is not the same as the angle shown in
the image above. The important thing here

is that you have hit the last angle of the servo.

Servo Motor Calibration

(3)

Remove the servo horn from the servo motor (3)

I¢

(5)

(4)

Reattach (4) and reposition the servo horn
perpendicular to the servo motor as shown. (5)

Before starting the assembly, you have to manually calibrate the angles of the servo motors. Otherwise,
Servo Motors won’t be working properly.

Slowly turn the servo horn counterclockwise (6)
until it is parallel with the servo motor, as seen in the

image.(7)

When this step is finished, it means that the servo
motor is in the center position. It is important that
you apply this process to other servo motors in the
set. Afer processing the other motors, remove the

servo horn and set aside for assembly.

M3 x 12 mm Screws 2 Pcs.

()
In this step, you will need
a screwdriver and pliers.
M3 Nuts 2 Pcs.
Pay attention to the
direction of the Servo
Motor. Servo Horn Screw
SG-90 Servo Motor
0.

Servo Horn

m

Servo Mounting Screw

M3 Nut 4 pcs.

M3 x 10 mm Screw 4 pcs.

Micro:bit
MainBoard Brick

PicoBricks Motor Driver

L @ M3Nuts2pcs.

M3 x 10 mm Scews 2 Pcs.

112

113

12

M3 x 12 mm Screws 2 Pcs.

HC - SR04

M3 Nuts 2 Pcs.

Assembly is finished

114

Unplugged 4: Setup of Circut

Let’s get to know the circuit elements of the smart trash bin that we have completed and set up the circuit
with PicoBricks modules.

115

© MicroBlocks Code of The Project:

W 0 =~ &L W N

e e e e e e
O W ~NO U R WN RS

#Z Trash-Tech

#Trash Tech Project
from microbit dimport =
from picobricks dimport =
Function Initialization
motor = motordriver()
display.show(Image.HAPPY)
while True:
distance = measure_distance()
if distance<9 and distance>1:
display.show(Image.YES)
motor.servo(1,90)
sleep(2000)
motor.servo(1l,180)
sleep(200)
else:

motor.servo(1,180)
display.show(Image.HAPPY)
sleep(200)

116

Mohey BoX

Money Box Project

PicoBricks Money Box can detect objects placed in its receptacle through distance sensor

in the front of it and automatically lifts its receptacle to take in these objects.

0 Project Details:

In this project, when the distance sensor detects the object placed in the receptacle, the
servo motor connected to the motor driver is adjusted to the angle specified in the code,

and then the object inside the receptacle is dropped into the Money Box.

@ Connection Diagram:

You can assemble this project by breaking apart the PicoBricks modules at the proper

points.

118

0 Project Images:

119

0 Setup Steps of The Project:

Servo Motor Calibration

Before starting the assembly, you have to manually calibrate the angles of the servo motors. Otherwise,
Servo Motors won’t be working properly.

l .

Attach the servo horn to the servo motor (1)

®
(2)

Then slowly turn the servo horn clockwise

until it stops. It is not a problem if the servo
horn is not the same as the angle shown in
the image above. The important thing here

is that you have hit the last angle of the servo.
@)

(3)

Remove the servo horn from the servo motor (3)

Ié

(5)

(4)

Reattach (4) and reposition the servo horn
perpendicular to the servo motor as shown. (5)

(6)

Slowly turn the servo horn counterclockwise (6)
until it is parallel with the servo motor, as seen in the

When this step is finished, it means that the servo

image.(7)

motor is in the center position. It is important that
you apply this process to other servo motors in the
set. Afer processing the other motors, remove the

servo horn and set aside for assembly.

PicoBricks
Main Board Module

’7 M3 Nut 4 Pcs.

M3 x 10 mm Screw 4 Pcs.

M3 Nut 2 Pcs. —‘
B

HC-SR04 Distance

;
N

M3 x 12 mm Screw 2 Pcs.

M3 x 10 mm Screw 2 Pcs.

M3 Nut 2 Pcs.

PicoBricks
Motor Driver Module

M3 Nut 2 Pcs.

—

Make sure Servo Motor is faci

/ same direction as seen in the

o

M3 x 12 mm Screw 2 Pcs.

*Don't forget to calibrate the servo motor

the ;
natne you can move back to page 4 for it.

image

120

You can thread the cable through the
open-ended side of the component.

Setting Up The Circuit

Let’s get to know the circuit elements of Money Box that we completed the setup and make the circuit setup

2GPT 14 - 15 Socket rsTriple Battery Holder

with PicoBricks modules.

°
HC-SRO04 Ultrasonic
Distance Sensor

Servo Motor GT

\—a Motor Driver Module

121

You can start making the cable
connections after this step

You can thread cables through the same component.

10 2pcs.

®

122

Triple Battery Holder

Servo Horn Screw
(Inside the Servo Motor's package)

®

14

Servo Horn
(Inside the Servo Motor’s package)

M3 x 10 mm Screw

nn e

For T Slot joint setup first, place the
M3 Nut into the Nest (1) Then tighten the
Joint with using M3 x 10 mm Screw.(2)

Repeat this step one more time.

123

Wooden Wrench
*(You can use the wooden wrench for the M3 Nyloc nut.)

19

M3 Nyloc Nut

5 mm Plastic Part

M3 x 15 mm Screw

For T Slot joint setup first, place the
M3 Nut into the Nest (1) Then tighten the
Joint with using M3 x 10 mm Screw.(2)

M3 x Nut

M3 x 10 mm Screw

21

M3 x 20 mm Screw

21 2pcs.

M3 Nyloc Nut

You can use the wooden wrench for the M3 Nyloc nut.

124

M3 Nut

M3 x 10 mm Screw 41

Servo Horn Mounting Screw
(Inside the Servo Motor’s Pakacge.)

5 mm Plastic Spacer

You can use the wooden
wrench for the M3 Nyloc nut.

M3 Nyloc Nut

M3 x 15 mm Screw

Assembly is finished and you
can move on with coding steps.

125

® MicroBlocks Code of The Project:

W oo~ Ok W=

N N N N N e e e e N e
VA WN RO WMAWRNRED

Z Money-Box

#Money Box Project
from microbit import =
from picobricks import =

Function Initialization
motor = motordriver()
motor.servo(1,180)

trashDetected=0
distance=100

while True:
rawdistance=measure_distance()
if rawdistance<1200:
___]distancezrawdistance
motor.servo(1,1860)

sleep(500)

if distance<5:

trashDetected=1

sleep(300)

if distance>9 and trashDetected==1:
trashDetected=0
motor.servo(1,90)
sleep(500)

126

)

Safe Box

Safe Box Project

The PicoBricks Pass Box is an educational project kit designed to create a pass box that
automatically locks after assembling the wooden pieces and PicoBricks modulesaccording
to the installation steps.

In this project, when the correct password is entered by using a potentiometer and button,
the door of the safe opens. After closing the door, it automatically locks thanks to the LDR

sensor inside the safe.

0 Project Details:

In this project, when we correctly enter the password we have set in the code by using the
potentiometer and button module, the servo motor moves to the specified position, and
the door opens. Through the LDR module, the closure of the pass box lid is detected,
triggering the servo motor to operate and lock the door. We will create the code blocks
that enable these functions. With the PicoBricks OLED display module and Micro:Bit

Matrix LEDs in the Pass Box project, we will obtain visual output.

@ Connection Diagram:

You can assemble this project by breaking the PicoBricks modules at the proper points.

128

0 Project Images:

129

0 Setup Steps of The Project:

Servo Motor Calibration

Servo Motors won’t be working properly.

(1)

(3)

Attach the servo horn to the servo motor (1) Remove the servo horn from the servo motor (3)

Ié

Before starting the assembly, you have to manually calibrate the angles of the servo motors. Otherwise,

(6)

Slowly turn the servo horn counterclockwise (6)
until it is parallel with the servo motor, as seen in the
image.(7)

Servo Motor

L M3 x 12 mm Screw 2 pcs.

M3 Nut 2 pcs.

®
(2)
5
(4) © When this step is finished, it means that the servo
Th low! h h lockwi motor is in the center position. It is important that
en slowly turn the servo horn clockwise Reattach (4) and reposition the servo horn) .
. N B you apply this process to other servo motors in the
until it stops. It is not a problem if the servo perpendicular to the servo motor as shown. () .
B . set. Afer processing the other motors, remove the
horn is not the same as the angle shown in
N N R servo horn and set aside for assembly.
the image above. The important thing here
is that you have hit the last angle of the servo.
@)
PicoBricks LDR Brick
..o
Lo [
=

M3 Nut

M3 x 10 mm Screw

130

Servo Horn Screw
(Can be found inside the
package of Servo Motor.)

Servo Horn

Servo Horn Mounting Screw
(Can be found inside the package of Servo Motor.)

M3 Nuts 2pcs.

PicoBricks Motor Driver Brick

M3 x 10 mm Screw 2 pcs.

M3 x 10 mm Screw 4 pcs.

M3 x 10 mm Screw 4pcs.

Micro:Bit
Mainboard Brick

131

M3 x Nuts 3 pcs.

OLED Screen Brick

8

A

Potentiometer & Button Brick

M3 x 10 mm Screws 3 pcs.

Make sure all cables are ready to be socketed to
MainBoard. You can go back to page 18 for circuit
diagram.

14 2 pcs.

132

M3 Nut 2 pcs.

M3 x 12 mm Screw 2 pcs.

| n zn
For T Slot joint setup first, place the

M3 Nut into the Nest (1) Then tighten the
Joint with using M3 x 12 mm Screw.(2)

M3 Nut 3 pcs.

M3 x 12 mm Screw 3 pcs.

133

Wooden Wrench
*(You can use the wooden wrench for the M3 Nyloc nut.)

19

M3 Nyloc Nut

5 mm Plastic Part

M3 x 15 mm Screw

For T Slot joint setup first, place the
M3 Nut into the Nest (1) Then tighten the
Joint with using M3 x 10 mm Screw.(2)

M3 x 10 mm Screw

21

The Assembly is finished and you can move
on the coding steps.

134

© MicroBlocks Code of The Project:

£ Safe-Box [}
1 #Safe Box Project
2 from microbit import *
3 from picobricks import =
4
5 # Pin Initialization
6 LDR_Pin = pin@
7 Pot_Pin = pinl
& Button_Pin = pin2
9
10 # Function Initialization
11 oled = SSD1306()
12 oled.init()
13 oled.clear()
14 motor = motordriver()
15
16 display.show(Image.HAPPY)
17 password=[1,2,3,4]
18 userPass=[]
19
260 def startOLED():
21 |oled.add_text(0,1,"Close the lid")
22 oled.add_text(0,2,"to lock the")
23 oled.add_text(0,3,"SafeBox")
24
25 def addList():
26 | #counter=0
27 if counter>0:
28 _| oled.add_text(2,3,str(userPass[0]))
29 if counter>1:
30 _| oled.add_text(4,3,str(userPass[1]))
31 if counter>2:
32 _| oled.add_text(6,3,str(userPass[2]))
33 if counter>3:
34 _| oled.add_text(8,3,str(userPass[3]))
35
36 def controlLoop():
37 control=0
38 for i in range(4):
39 if password[i]!=userPass[i] @
40 —‘_l control=1
41 if control==1:
42 _| display.show(Image.NO)
43 else:
44 display.show(Image.YES)
45 motor.servo(1,90)
46 sleep(3000)
a7 oled.clear ()
48
49 while True:
50 display.show(Image.HAPPY)
51 counter=0
52 startOLED()
53 light = LDR_Pin.read_analog()
54 pot = Pot_Pin.read_analog()
55 button = Button_ Pin.read digital()
56 print(Llight)
57 if light<50:
58 " | sleep(2000)
59 oled.clear()
60 motor.servo(1,180)
61 while counter<4:
62] pot = Pot_Pin.read_analog()
63 userNumber=round(round(pot -0) * (9 -0) / (1823 - @) + 0)
64 oled.add_text(2,1,"Password:")
65 oled.add_text((2+(counterx2)),3,str(userNumber))
66 addList()
67 button = Button Pin.read digital()
68 if button==13
69 userPass.insert(counter,userNumber)
70 counter=counter+l
71 sleep(200)
T2
73 controlLoop()
74 sleep(500)
75 counter=0
6 control=0
7

135

